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Keratoconus is a non-inflammatory, bilateral, progressive, often asymmetric 

primary ectasia associated with irregular astigmatism and decreased visual 

acuity affecting 1 in every 2000 Americans (1,2). It is one of the most common 

indications for corneal transplantation. Keratoconus usually presents in the 

second decade of life and progresses into the third and fourth decades 

affecting both genders and all ethnicities. Previous studies have demonstrated 

an increased protease activity in the cornea, which could theoretically break 

down some of the collagen cross-linkages and thus reduce the mechanical 

strength and stiffness of the cornea (5).  A genetic predisposition toward the 

development of keratoconus has also been demonstrated, which sometimes 

run in families and identical twins and also in individuals with Down syndrome, 

Ehlers-Danlos syndrome, and Marfan syndrome (6,7).  Keratoconus has also 

been associated with eye rubbing and atopic diseases such as asthma, 

allergies and eczema (8).  The disease results in progressive dissolution of 

Bowman membrane.  Cellular and structural changes in the cornea affect the 

integrity and lead to protrusion and scarring (9). Earlier studies suggest a role 

of oxidative stress and keratocyte apoptosis in the pathogenesis of 

keratoconus (13-16). Recent investigations have shown an increased 

expression of the secreted frizzled-related protein-1 (SFRP-1), SFRP-1 and 

microtubule-associated protein light chain, and transforming growth factor-β 

(TGFβ) signaling pathway activation and increased TGFβ pathway markers in 

severe keratoconus (17,18,20).  TGF-β is a signal protein which regulates 

many cellular functions including cell proliferation, differentiation, migration, 

and survival as well as development, carcinogenesis, fibrosis, wound healing 

and the immune response (21).  TGF-β2 transmits its signal through SMAD3 

transcription factor-dependent and independent pathways (22). It was also 

reported TGF-β activates NF-κB and RhoA, and RhoA activates NF-κB in 

several kinds of cells in a Smad-independent pathway (22). The use of TGFβ 

receptor kinase inhibitors or angiotensin pathway blockade increases Bowman 

membrane integrity in chronic allograft nephropathy (23). TGFβ1 is a known 

potent chemotactic cytokine to initiate inflammation, but the autoimmune 

phenotype seen in TGFβ1 knockout mice reversed the concept of it being a 

pro-inflammatory cytokine to predominantly an immune suppressor (25).  The 

discovery of the role of TGFβ family of genes in Th17 cell activation once again 

revealed the pro-inflammatory effect of TGFβ1. Keratoconus was previously 

thought of to be a non-inflammatory condition, however, the presence of 

TGFβ2 in the keratoconic corneas has inspired the investigations of this 

project. Activation of both Th1/Th17 cells and regulatory T cells (Tregs) by 

TGFβ1 reversely regulated by IL-6 shows the dual role of TGFβ1 in regulating 

inflammation (24).  Although not in context with the pathogenesis of 

keratoconus, recent reports have indicated that IKKγ facilitates RhoA 

activation, which in turn activates ROCK, leading to direct phosphorylation of 

IKKβand subsequent activation of NF-κB.  Conclusively, the RhoA and IKK 

complexes may regulate each other and form a positive feedback loop to 

activate NF-κB (25) Corneal keratocytes (corneal fibroblasts) are specialized 

fibroblasts that resides in the stroma.  This layer of cornea represents about 

90% of corneal thickness and is comprised of highly regular collagenous 

lamellae and extracellular matrix components.  Following an injury to the 

cornea, some keratocytes undergo apoptosis, as a result of expression of the 

signaling molecules secreted by the upper layers including IL-1α and TNF-α 

(26).  
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Normal Cornea Histology 

TGF-β2 and TNF-α both demonstrated higher expression in the 

epithelial layer of keratoconic corneas when compared to the 

normal corneas (p<0.0001). NF-κB had similar expression levels 

in the epithelial and stromal layers of keratoconic corneas when 

compared to normal corneas (p=0.64 and p=0.99 respectively). 

However, there was higher intensity staining of NF-κB in the nuclei 

of keratoconic corneal samples when compared to normal corneal 

samples (p=0.002).  These data indicate a paradigm shift in the 

understanding of keratoconus from non-inflammatory condition to 

in fact an inflammatory state. 

Immunofluorescence staining for IL-33 was also performed and 

there was a very low level of antibody binding (data not shown). 

This may be due to the short half life of IL-33 and the lag time 

between surgical resection and tissue fixation. We will consider 

using fluorescent in situ hybridization with molecular probes with 

complimentary sequences to IL-33 mRNA.  

Future directions: Results from an assay that will measure TGF-

β2 expression by cultured human corneal endothelial cells (HCEC) 

after challenge with TNF-α and/or mechanical disruption in the 

presence or absence of a Smad3 small molecule, SIS3, inhibitor 

are pending. 

Under an Institutional Review Board (IRB) approved protocol, surgically 

discarded and/or de-identified normal donor and other keratoconic cornea. 

Keratoconic and normal donor corneas were obtained from the department of 

Ophthalmology, Loyola University Health System. A total of 12 normal and 12 

keratoconic corneas were selected for this study. The tissues samples were 

fixed in formalin/PIPES buffer and stored at 4C until paraffin embedding and 

sectioning at 4 microns. Deconvolution immunofluorescence (IF) was 

performed on the unstained slides. After imaging, relative expression (normal 

vs keratoconus) of TNF-, TGFβ2, and NF-κB was quantified in Imaris®. For 

TNF-, TGFβ2, and NF-κB, Center channel measurements were obtained per 

10 µm cubes (see figures and 1 and 2) in the epithelial and stromal layers of 

both keratoconic and normal donor corneas. Samples not containing intact 

epithelium were not quantified. Statistical analysis was performed using Graph 

Pad Prism one-way ANOVA with multiple comparisons. To determine the 

intensity of NF-κB in the nucleus, surfaces were created around Imaris® in the 

435 nm channel (dapi stained nuclei) and the mean of Cy5 intensity was 

quantified within those volumes (see figures 3 and 4). Student’s unpaired t-test 

with Welch’s correction was performed in graph pad prism. See below images 

for examples of how Imaris was used to quantify data. 

 

 

Figure 2: same image as figure 2 with measurements cubes of epithelial layer 

Figure 1: Imaris image of normal cornea with epithelium and stroma stained for  TNF-alpha 

epi 

stroma 

epi 

stroma 

Figure 3: Imaris image of keratoconus cornea stained for NF-κB  

Figure 4: same image as figure 3 volumes created around nuclei, inside which NF-κB 

intensity was quantified 

Results 

Figure 5: quantification of relative fluorescence (mean signal:noise ratio). TGF-β2 is 

expressed 1.7 times higher in keratoconus epithelium when compared to normal corneas 

(p<0.0001) 

Figure 6: quantification of relative fluorescence (mean signal:noise ratio). TNF-α is 

expressed at 1.9 times in keratoconus epithelium when compared to normal corneas 

(p<0.0001). 
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Figure 7: quantification of relative fluorescence (mean signal:noise ratio). NF-κB is 

expressed 0.9 times as high in keratoconus epithelium when compared to normal corneas 

(p=0.64).  

Figure 8: quantification of relative fluorescence (mean signal:noise ratio). NF-signal 

intensity was 1.3 times higher in keratoconus epithelium when compared to normal corneas 

(p=0.0002) 
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